EIC prospects for SIDIS and ΔG

Thomas Burton
BNL
RHIC and AGS Users' Meeting 2010

Overview

- What do we currently know about spin?
- What do we need to learn & improve?
- How does an EIC allow us to do this?
 - ΔG
 - SIDIS longitudinal & transverse spin

Spin of the nucleon

$$\frac{1}{2}h = \left\langle P, \frac{1}{2} | J_{QCD}^z | P, \frac{1}{2} \right\rangle = \sum_{q} \frac{1}{2} S_q^z + S_g^z + \sum_{q} L_q^z + L_g^z$$

- Ultimate goal: disentangle quark, gluon and orbital contributions to nucleon spin
- Understand spin-dependent parton dynamics (Sivers, Boer-Mulders...).
- Many quantities/distributions are still poorly known.

Deep inelastic scattering

Longitudinal spin in DIS

Quark (spin ½)
absorbs
photon (spin 1)
and flips helicity

$$F_1(x) = \Sigma_q q^+(x) + q^-(x)$$

$$g_1(x) = \Sigma_q q^+(x) - q^-(x)$$

$$A_I = g_I / F_I$$

 $F_2^{em}\text{-log}_{10}(x)$

Scaling violations

DIS

- Exquisite control of parton kinematics.
- Clean and precise determination of parton distributions
 - We would like the same precision for spindependent distributions
 - → Detailed understanding of nucleon spin structure
- Where do we currently stand with this aim?

Gluon contribution to the nucleon helicity: ΔG

$$\frac{1}{2}h = \left\langle P, \frac{1}{2} | J_{QCD}^z | P, \frac{1}{2} \right\rangle = \sum_{q} \frac{1}{2} S_q^z + S_g^z + \sum_{q} L_q^z + L_g^z$$

•
$$\Delta G = \int dx \, \Delta g(x)$$

1) Inclusive DIS spin asymmetries

g_I scaling violations

Scaling violations (Q²-dependence) give indirect access to the gluon distribution via DGLAP evolution.

2) ΔG from p + p

RHIC p + p collisions at midrapidity **directly** involve gluons

Rule out large ΔG for 0.05 < x < 0.2

Access to ΔG at small x where uncertainties are very large

5fb-1 integrated luminosity

Access to ΔG at small x where uncertainties are very large

5fb⁻¹ integrated luminosity

ΔG via charm

Measure charm prodution via
 D⁰ → K⁻ π⁺

 High energy → theoretically clean

> 10 fb⁻¹ at 10+250 2.5 fb⁻¹ at 5+50

Gluon polarisation

- EIC will provide precise g₁ to small x
- \rightarrow Determination of Δg at small x
- → Reduced uncertainty on ∆G due to low-x extrapolation
- → Precise test of the Bjorken sum rule

$$\int_0^1 dx \, (g_1^p(x,Q^2) - g_1^n(x,Q^2)) = 1/6g_A(1 + O(\alpha_s) + O(1/Q^2))$$

inclusive DIS

Semi-inclusive DIS: SIDIS

Tag a hadron -> access to quark flavour

$$\frac{1}{2}h = \left\langle P, \frac{1}{2} | J_{QCD}^z | P, \frac{1}{2} \right\rangle = \sum_{q} \frac{1}{2} S_q^z + S_g^z + \sum_{q} L_q^z + L_g^z$$

Longitudinal spin

Semi-inclusive DIS asymmetries

Flavour-dependence

Flavour-dependence

eRHIC projections for:

- 10 + 250 GeV
- 9fb⁻¹

Transverse spin

Transverse spin asymmetries

- First seen in p + p
- What is their origin?

Transversity distribution $\delta q = q\uparrow - q\downarrow$

"Collins" fragmentation functions

Fragmentation depends on S_{\perp}

Transversemomentumdependent
functions
(TMDs)

"Sivers" parton distributions

Parton distributions depend on S_{\perp}

Transverse spin in SIDIS

- Collins & Sivers different azimuthal dependence
- Disentangle the effects

Transverse spin in SIDIS

- Collins & Sivers different azimuthal dependence
- Disentangle the effects

Phys. Rev. Lett. 103 (2009) 152002

Current status

Transversity

Uncertainties remain large

Sivers functions

Sivers at EIC

- High luminosity
- → x, Q² & momentum dependence
- → multidimensional binning

Transverse spin at EIC

- Uncertainties remain large compared to helicity distributions
- Precision measurements of TMDs, including their momentum and Q² dependence
 - Sivers, Collins, Boer-Mulders...
- Precise measure of transversity
- High energy → theoretically interpretable

EIC summary

- Complementary x, Q², energy range to past & existing experiments
- High luminosity → precise
- → Will advance our knowledge of all aspects of the spin puzzle
- Also see talks by:
 - Elke: GPDs
 - Thomas Ullrich: EIC physics case
 - Vladimir: eRHIC machine design